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Separation from a smooth surface in a slender conical flow 
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SUMMARY 

High Reynolds number flow of an incompressible fluid past a smooth surface in a slender conical flow is con- 
sidered. Attention is focused upon the flow properties in the neighbourhood of the separation line. The ana- 
lysis incorporates the results of a recent inviscid-flow investigation by Smith [1], and the ideas of Sychev [2] 
for flow separation in two dimensions. 

1. Introduction 

In this paper we consider the nature of  the high Reynolds number flow in the neighbourhood 

of  the separation line on a smooth surface in a slender conical flow. The analysis is based upon 

an inviscid model of  the flow proposed by  Smith [1], and incorporates the ideas developed by 

Sychev [2] for the high Reynolds number flow close to a separation point in two dimensions. 

The separation phenomenon in a conical flow differs from that in two dimensions in that for 

the latter a closed separation bubble is formed when the flow is steady in which the total head of  

the fluid is very much less than in the stream outside. The 'open' type o f  separation associated 

with conical flow is also a much more stable phenomenon than the closed-bubble separation 

o f  two dimensions. 

A frequently encountered type o f  separation in conical flow is the separation from a salient 

edge, as in leading-edge separation. In such a flow the separation line is pre-determined, and for 

an inviscid fluid the separating flow may be modelled using an infinite spiral vortex sheet 

springing from the edge. Successful numerical calculations have been performed, originally by 

Smith [3], using such a model in which the vortex sheet forms a stream surface of  the flow and 

across which there is no jump in pressure; in addition a Kutta condition is applied at the edge. 

Separation in a conical flow can also take place away from salient edges, for example primary 

separation on a circular cone at incidence or the secondary separation beneath the primary 

vortex on a delta wing. In each of  these cases the separation takes place from a smooth surface 

and, in view of  the success experienced with the leading-edge vortex flow, it is natural to 

enquire whether or not a theory for separation from a smooth surface can be developed from 

an inviscid model based upon an infinite spiral vortex sheet originating at the separation line. 
For  such a model the separation line must be fixed by viscous considerations. Nutter [4] has 

enjoyed partial success in his calculations o f  the secondary separation from the surface of  a 

slender delta wing. In these calculations the secondary separation is fixed and the inviscid-flow 
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76 N. Riley 

characteristics evaluated; the boundary layer on the wing surface is then investigated numerical- 
ly. The position of the separation line for the inviscid flow is systematically changed until it 
coincides with the separation line predicted by the boundary-layer calculation. Nutter ob- 
serves from his calculations that separation of the flow takes place just beyond the pressure 
minimum following a small but sharp rise in pressure. However it should be noted that there is 
only poor numerical resolution close to the separation line in both the inviscid and viscous parts 
of these calculations. 

It is clear that for a further understanding of these separated flows a more detailed knowl- 

edge of the flow field close to the separation line is required. Smith [ 1 ] has recently carried out 
a detailed inviscid analysis in the neighbourhood of the separation line at which a vortex sheet 

leaves the smooth surface. He finds a solution in which the vortex sheet has infinite curvature 
and in which the pressure gradient becomes infinite as separation is approached. In this respect 
the flow properties are Similar to those in the classical two-dimensional Kirchhoff model of 
separated flow. Smith also discusses another solution which does not exhibit this singular 
behaviour, and which is analogous to inviscid smooth separation in two dimensions (see for 

example Thwaites [5 ]). 
The inviscid solutions of Smith provide the starting point for the high Reynolds number in- 

vestigation of this paper in which we consider the slender conical flow along a plane wall with 

flow separation taking place along a conical ray. It is first shown that the singular inviscid solu- 

tion cannot be consistent with classical boundary-layer theory. Following Sychev [2] we then 
postulate, as the basis for a self-consistent theory, that the singular solution incorporates a 

multiplicative constant O(R-~) where R = U£/u is the Reynolds number. Here U is the free 
stream speed, ~ a length and v the kinematic viscosity of the fluid. We assume R >> 1, and 
develop a theory appropriate in the formal limit R ~ oo. In the inviscid limit R = oo the singular 

solution referred to above does not feature. 
Because the changes which take place normal to the separation line in this slender conical 

flow are very rapid, compared with those parallel to it, the flow structure exhibits many of the 
features of a two-dimensional flow. Sychev [2] has considered the two-dimensional case and our 
development closely parallels his work. Thus we identify three distinct regions in the flow, 
namely the pre-interaction region, the interaction region itself in which separation takes place 
and the post-interaction region. In the first of these regions the classical boundary layer dev- 
elops in a pressure gradient which becomes very ]'arge. The boundary layer then exhibits a 
double structure as the inner parts respond to the rapid changes in pressure. This region 
matches with the interaction region in which the solution exhibits a triple-deck structure (see 
for example Stewartson [6]), and in which the two-dimensional calculations of Smith [7], 
predicting separation, can be incorporated. The final region downstream from the interaction 
region has itself to be divided into three parts. There is a boundary layer at the wall, a shear 
layer centred upon the vortex sheet and a further adjustment region in order that a satisfactory 
match with the triple-deck can be made. The flow in this post-interaction region is more com- 
plicated than in two dimensions. This is because the 'dead-air' region of two dimensions is 
replaced by a region in which the fluid velocity is the same order of magnitude as that upstream 

of separation. 
We note finally that the inviscid ideas of [1] have been extended by Smith [8] to three- 

dimensional flows. He also shows that the triple-deck structure is appropriate close to the 
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separation line. Although, in a sense, the slender conical flow is a special three-dimensional flow 
it is worthy of  a discussion in its own right because the inviscid flow beyond separation is locally 

determined. This is not so in a general three-dimensional flow. Thus a more complete theory 

can be developed for the case of  the slender conical flow. 

Figure 1. The inviscid separating vortex sheet  and co-ordinate system. 

2. The inviscid solution 

With reference to the cylindrical polar co-ordinate system of  Fig. 1 the body shape considered 

is the plane wall z = 0 which extends laterally to infinity, and is parallel to the undisturbed flow 

which is a uniform stream with speed U in the direction 0 = 0. The flow is assumed to be 
conical, and only highly swept separation lines are considered so that slender-body theory is 

applicable. Smith [ 1] has considered the 'open'  type of  separation, in the inviscid limit R = 0% 

in which the separated flow is modelled by a slender conical vortex sheet which springs from 

the separation line 0 = 0 s. In particular, close to the separation line itself, Smith assumes that 

the shape of  the vortex sheet in any surface r = constant is given by 

z ~ u ( o  - o S ,  ( 2 . 1 )  

where n is a parameter to be determined. If  n = 1(2M + 3) he demonstrates that the vortex 

sheet boundary conditions are satisfied, that is there is no jump in pressure across the sheet 
3 5 

which itself forms part of  a stream surface, i fM = 0 or 1 corresponding to n = i ,  ~ respectively. 

He further conjectures that these conditions will satisfied for the complete set of  values of  n 

given b y M  = 0, 1 ,2 . . . .  
I f  we let ~ = 0 - 0 s then we refer to ~ < 0 as the upstream side of  the separation line and 

> 0 as the downstream side. Smith shows that the surface velocities and pressure gradient 

upstream of  separation in this conical flow, made dimensionless with U and O La respectively 

where O is the fluid density, are given f o r M  = 0 and If  I ~ 1 by 
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V r = 1 + O(t), 
_1 

v~ =Co + c~(-t)  ~ + O(0, 

ap 1 
a--~-= i CoCl(-~) k + O(1), 

(2.2) 

where Vr, V~ are the r- and t-components of velocity respectively, and Co, ca are constants. The 
singular behaviour of these quantities is analogous to the behaviour close to separation in the 
Kirchhoff free-streamline flow in two dimensions. Smith observes that for M = 1 the flow 
variables exhibit no such singular behaviour. Downstream of separation the flow shows no 
singular behaviour regardless of the value of M. Thus for 0 < ~ ~ 1 

V r = 1 + O(t2) ,  

4 
V~ = 2M +------fit + O(t2), (2.3) 

ap _ 4(2M + 1) 
t + O(t2). 

at (ZM + 5) 2 

In the remaining sections of  this paper we shall examine the consequences of the predictions 
of inviscid theory, outlined above, for high Reynolds number flow. In particular we shall argue 
that the singular solution corresponding to M = 0 is suppressed in the formal limit R ~ oo. 

3. Boundary4ayer analysis 

With the inviscid flow determined, as described in Section 2, it is important to ensure that this 
is consistent with a high Reynolds number viscous-flow analysis. In particular viscous-flow 
separation must take place at 0 = 0 s in Fig. 1. It is natural therefore to carry out a classical 
boundary-layer analysis and it proves convenient to employ the reduction of the boundary- 
layer equations used by Brown [9] for conical flow. Thus we first introduce a dimensionless 
co-ordinate normal to the boundary as 

= R  ~ z / ( r ~ )  2 , (3.1) 

and if ( V  r, V~, Vz) are the dimensionless components of  velocity we define 

± _1 

v z = R ~ V z ( r / ~ )  ~ . (3.2) 

Following the introduction of these variables all flow properties are independent of r in our 
conical flow, and if we write 
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af, v~= a f '  

- -  1 ~ s  3 ~ v~=~F-~- ~s a~, 

(3.3) 

then the boundary-layer equations may be written as 

_(3 s+ 
-~-1 a-~ + a~- a D ~  ~,a~-/ - a ~  3 '  

3 a¢,~ a 2 ~k a~k az¢ a¢, as _ dp a 3 Lk 
- s + - ~ - - j  a-P- + a~- a~a~- + a~- a~- d~ + a~ - ~  

(3.4) 

With the pressure gradient as in (2.2) for the case M = 0 we now carry out a local analysis, 

close to separation, in the spirit o f  Gold stein [ 1 0], Stewartson [ 1 1 ] and Brown [9]. In order to 

retain a balance between pressure, viscous and inertia terms in (3.4) we write 

_3 _1 

x=(-~) ' ,  n = (CoC~)'f/x, 

with 

~ ~ ( C o O l ) 1  )t-~ f O ( ~ ) ,  S ~ (C0¢1)  I g o ( ~ )  as X ~ 0 .  ( 3 . 5 )  

The functions fo, go then satisfy 

fO pr f i  t 1 - -  2 - ~ ; o  + , ;o '  - '  

g o  m 5 - 3 - r  - - ~ SogO' -~s~ g0:0 ,  

with ~ (0) = fo(O) = go (0) = go(O) = 0 together with fo'(O) = O, since the transverse skin friction 

vanishes on the line ~ = O, and the condition that J?o, go are not exponentially large as r~ -~ ~o. 

From the equation for fo we see that fo" has the properties that 

fo' ~ a ~  ~ as 7? -+ ~ ,  a const, 

f o " _ =  1 r / +  o0?S),  r l ~ l .  
(3.6) 

Equations (3.6) imply that ~ '"  vanishes for some value of  77 and we suppose that it vanishes for 
- i v  

the first time at r /=  r~o where we require/o (r~o) ~< 0. Differentiating the equation for /o once 
with respect to r/gives 

3C0 v 5 - - 1 - - tt 
= f ~ ,  ~ :oSg" + ~ :g (3.7) 

and since J?o(r~o), - '  -"  - -iv fd(r/o), fd (no) > 0, fo '0 /o)  = 0 we deduce that fo ( n o ) >  0 which gives a 
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contradiction. On the basis of this analysis we deduce that the local high Reynolds number 

flow is not consistent with the inviscid flow described in Section 2. We note that for cl = O(1) 

no matter how small, the pressure gradient of  (2.2) is infinite at ~ = 0 and we might intuitively 

expect the viscous flow to separate at some ~ < 0. In the next section we show how the ideas 

introduced by Sychev [2] for two-dimensional flow can be employed in our conical flow situa- 
tion to describe the viscous-inviscid interaction which takes place in the neighbourhood of the 

separation line. 

4. Interaction theory 

The situation in Sections 2 and 3 is analogous to that for two-dimensional flow in which the 

Kirchoff free-streamline theory describes the inviscid separated flow. Sychev [2] has developed 
a self-consistent analysis for two-dimensional flow in which the coefficient of the singular term 

in the pressure gradient is not independent of Reynolds number but is vanishingly small as 
R ~ oo. We adopt the approach of Sychev here and assume that the constants tl, Cl in (2.1), 

- 1  _ 1  

(2.2) are both O(R r~), specifically we write cl =R i~1.  As in the case of two-dimensional 

flow this leads to a self-consistent theory as set out below. 

The interaction analysis is centred upon the triple-deck theory introduced independently 

by Messiter [12] and Stewartson [13]. The triple-deck is preceded upstream by a pre-inter- 

action region, which itself extu"oits a double structure, and is followed by a post-interaction 

region which must be studied in several different parts. Figure 2 shows a schematic representa- 

tion of the situation. The post-interaction region differs in a conical flow from that in a two- 

dimensional flow. In the latter case, as we proceed beyond separation, we move into what 

is essentially a 'dead-air' region. For the conical flow under consideration here the separation 

is of  open type and so beyond separation the flow velocities are O(1) in contrast to the much 

smaller velocities anticipated in a closed separation bubble. 
We now discuss the pre-interaction, triple-deck and post-interaction regions separately. 

J ~  

S 

J ~  
f / "  J ' ~ 3  

3(iii) / 3(ii) 

Figure 2. The flow region under consideration. 1 Pre-interactionregion, 2 Triple-deckregion, 3 Post-inter- 
action region. The post-interaction region itself consists of 3(i) the shear layer, 3(ii) the boundary layer and 
3(iii) the adjustment region. S denotes the separation point and the separating vortex sheet of the inviscid 
flow is denoted thus - -  x - -  x - -  x - -  
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4.1. Pre-interaetion region 

With 3p/8~ from (2.2), given by 

1 - Z  
3__p_p = 1 R - g c o e l  ( - ~ )  ~ + O(R-~-), (4.1.1) 

we have a situation in which, as separation is approached, the boundary layer is developing in a 

prescribed pressure gradient C~o. For the boundary-layer solution we write 

__-1 _ ~  
= ¢o(~, ~) + R  1, ¢1(~, ~) + o ( g  8), 

__-1 __1 

s = S o ( ~ , ~ ) + R  1o S l ( ~ , ~ ) + o ( R  ~). 
(4.1.2) 

The leading terms 4o,  So in (4.1.2) may be expanded as series close to ~ = ~" = 0 in the form 

~ko = aof  2 + a l f  3 + a a f  s + . . . . .  + ~(bof 2 + . . . . .  ), 

S O = A o ~  2 + A 3 f  s + . . . . .  + ~(Bof ~ + . . . . .  ), 
(4.1.3) 

where, from equations (3.4), the unknown constants are determined in terms o fAo ,  ao and ot o as 

1 60a3 - Aoao 
a I = -~Oto,  b o - 

2ao 
30aoAa + 2a~ + 30aoAa +aoA2o (4.1.4) 

B 0 = 

and so on. 
Now, the second term of  (4.1.1) which corresponds to a very rapid change in pressure as 

I ~ I ~ 0 will bring about modifications to the leading term in the solution. In particular, as we 

might suppose, the inner region of  the boundary layer develops its own structure in response to 

this rapid pressure variation. Thus in a region which is of  thickness O (1~1 -~ ) as ~ ~ 0 -  we write 

COCI 1 
= 

Aococl  
s l ( ~ , ~ ' ) -  ~ ( - ~ )  gO)), (4.1.5) 

z %  

where 

± _ ±  

. = ao ~ ~'(-~) 

From (3.4), (4.1.3) and (4.1.5) we see that f, g satisfy 

fCtt 2 _ ~ ~2:,  + n : ' - : =  1, 

g,,, 2 1 2 - ~72g  ' '+  ~ r ~ g ' = f -  ~r/s a. 
(4.1.6) 
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The only property of the solution of these equations which we shall require is that as 7/~ oo 

--3 
f ~ a r / ~  +a2~ ,  

--3 
g ~13 r~ ~ + a2 rl, 

(4.1.7) 

where a,/3 and a2 are constants. These asymptotic forms provide the matching condition required 
for the solution in the outer part of the boundary layer. We do not investigate this outer solu- 
tion further but we shall incorporate (4.1.7) into the matching associated with the triple-deck. 

We note that in this inner region the leading terms of each of ~o, So are O ((-~)-~ ~2) and so 
from (4.1.2) and (4.1.5) we see that the perturbations in the expansions (4.1.2) in this lower 

region are comparable with the leadings terms when [ ~ I = O (R--~); this is the natural emergence 
of the triple-deck transverse length scale. Furthermore when [ ~ [ = O (R-~) we see from (4.1.5)3 
that in this lower region, where ~7 = O(1) we have ~ =O(R-~). This is the scale normal to the 
wall of the lower deck in the triple-deck and shows how (4.1.5) merges into the lower deck of 
the triple-deck structure. 

In Section 4,2 we consider the triple-deck and we note that because of the rapid variation in 
pressure which is predicted close to the separation line, and normal to it, the triple-deck is quasi 
two-dimensional. It is therefore possible to base the analysis on the two-dimensional theories 
of Messiter [12], Stewartson [6], [13] and Sychev [2]. 

4.2. The triple-deck region 

This central interaction region, as we have already noted, has transverse length scale O(R-$). 
The analysis incorporates the triple-deck structure and we now examine in turn the main, lower 
and upper decks shown schematically in Fig. 2. We note that the essence of the interaction is 
the coupling between the upper and lower decks in which the solution cannot be determined 
independently. 

(i) The main deck 
The main deck plays a relatively passive role in the interaction and represents a continuation of 

the oncoming boundary layer. Thus in the main deck ~" = O(1),~ = O ( R q ) a n d  we introduce a 
new variable 

~* =R--~.  (4.2.1) 

_I.L 
We expand the solution in the main deck in powers ofR 16 as 

_ 1  _± __a 
O = ~oo(t) + R  '" 4,1o(f) + R  ~ 4'~(~*, f)  + O(R '~), 

-_L -±  -_L 
S ----Soo(~ ) -~ R 16slO(~ ) --I- R 8 8 2 ( ~ * ,  ~)  'I- O(R '~), 

(4.2.2) 

where qJoo, ~0 l o ,  S0o,  s 1o are the leading terms, with respect to the variable ~, in ( 4 . 1 . 2 ) .  We note 
from (4.1.3) and (4.1.7) that as ~ -~ 0 
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¢0o ~ao~ "~, Soo ~ A o ~  2, 

CoC,~ - Aocoe_lf~ ~ ~ 
~1o 2a~ ~ ' Slo 2a$ 

o o 

(4.2.3) 

The equations satisfied by ~2, s2 are the inviscid equations 

O~oo a ~¢2 a ~  a 2~oo 
a~- at*a~ at* a (  f - -  = o, 

a-~oo a 2 ¢ :  a¢2 a2Soo 

a~- a~*a~- at* a~ "2 

(4.2.4) 

and from these equations we may deduce that 

a~boo aSoo (4.2.5) 
~ 2 : A ( t * )  0f ' s2=A(t*) a-T' 

where A (t*) is a displacement function which is, as yet, undetermined. To proceed further we 
must consider the flow in the lower deck. 

(ii) The lower deck _s_ 
As we have already noted the thickness of the lower deck is O(R 8 ). In addition to (4.2.1) we 
therefore introduce the new variable ~, where 

~', = R-~ ~', (4.2.6) 

and in order effect a match between the oncoming flow and the lower deck it is necessary to 
introduce new variables p , ,  ¢ , ,  s ,  as 

/ ! _1 

P , = R ' ( P - P o ) ,  ~ , = R ' ~ b ,  s , = R ' s .  (4.2.7) 

Substituting (4.2.1), (4.2.6) and (4.2.7) into (3.4) shows that p , ,  ~O, and s satisfy 

_ a3ff, d e ,  a2~ .  _0_~_.,~ a2~ ,  dp, + - -  
a~,  at*a~, at* ~ dr* a~, 3 '  

a S ,  a2s, a s ,  a2s, _ a3s. 
a~, a~*a~, a~* a~, 2 a~, 3 

The boundary conditions to be satisfied by the solution of these equations at f ,  = 0 are 

a ~ ,  as, = 0 ~*= a~'---~ =s ,=  a~-, " (4.2.9) 
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In addition we require that as ~', ~ co 

CoZha $ ,  ~ao~'2, + _-----i--~', + 2aoA(~J*)~',, 
2ao~ 

s, ~Ad2, + A°c°c~3 
2ao~ ~'* + 2A oA(~j*)~',, 

(4.2.10) 

in order to effect a match'with the main deck. Also, as ~* ~ _o% the lower-deck solution will 
match the oncoming flow provided that 

* = Co~l {. 
o;, ~ao'~2(-~*)  ~ + 2-~o (-~*) f(~), 

A0 2 A o c o ~ .  1 l 
s,  ~ a~ ~ r/2(-~J*)~ + 2a---~ (-~*)~g(rt),  

(4.2.11) 

where f ,g  and ,2 are as in equation (4.1.5). 

Now, since in (4.2.10) the displacement function A(~*) is undetermined, or in (4.2.8) the 
pressure p ,  is undetermined, the solution for the lower deck cannot be completed independently 
of the flow outside the main deck, i.e. in the upper deck. This we now consider. 

(iii) The upper deck 

The outflow from the main deck provides a disturbance which is larger than that associated 
with classical boundarylayer theory and it is this which is responsible for the triple-deck inter- 
action. The upper deck has length scales O(R-{ ) both parallel and normal to the wall and so in 
this region, in addition to (4.2.1) we introduce a new normal co-ordinate 

2 
~* = R 8(zl~). (4.2.12) 

The outflow from the main deck is given, from (3.2), (3.3), (4.2.2), (4.2.5) and (4.2.12) as 

' ~-)'  R --~ ~'* (4.2.13) V~ =-R-~c0( ~ A'(~*)-  r ' 

where the term O (R -{ ) in (4.2.13) arises, not from viscous effects, but from conical nature of 

the inviscid flow. 
In the upper deck the flow to leading order is inviscid and, since no vorticity is convected 

into it, irrotational. It is convenient therefore to introduce a velocity potential ~b as 

r g ~  
¢ = ~ +  ~2+ . . . . .  , (4.2.14) 

where $2 satisfies ZX2~b2 = 0 or invoking the slender nature of the flow 

a252 a2~b2 (4.2.15) 
~)rt,---- V- + ~.,~ =0,  
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where r/* = r~*/£. The solution of(4.2.15) is required to vanish as r/.2 + ~..2 _+ oo and, on ~* = 0, 
to satisfy 

a(~2_ Co(~)IA,(~n,/r), (4.2.16) 
0~'* r 

from (4.2.13). Thus from (4.2.15), (4.2.16) we have 

¢2 = CO(r )2 "~n f£o~ A'(£rfff/r)(rl* - rt~) d~ ' .  
( n *  - n ~ )  ~ ¥ ~ , 2  

(4.2.17) 

Now, with Vz2 = O~b2/3~'* and, from the Euler equations, coOVzz/~rl*=-bp2/b~'*,we may 
calculate the perturbation pressure P2 in the upper deck. In particular on ~* = 0 we have 

p2(~,) = Co 2 (__£r)-~ f£~ A'(~l*)d~l* (4.2.18) 
lr oo ~ * - ~ 1 "  ' 

which, since the pressure is constant across the main deck, provides an expression for the pres- 
sure when matched with the lower deck. A numerical solution for the fundamental problem 
associated with the lower deck, that is (4.2.8)1, (4.2.18) with (4.2.9), (4.2.10)1, (4.2.11)1 has 
been presented by Smith [7]. In this solution the flow separates smoothly from the surface in 
contrast to the singular behaviour [10] which is typical of boundary-layer separation in a 
prescribed pressure gradient. 

The final stage of the analysis is to examine the flow beyond the triple-deck interaction 
region, to ensure that our solution is consistent with that in the post-interaction region. 

5. The post-interaction region 

Downstream from the interaction region, where separation has taken place, the dominant 
feature of  the flow is the shear layer centred upon the vortex sheet of the inviscid flow. This 
shear layer separates two regions in which velocities are O(1) and in that respect differs from 
its counterpart in two dimensions which separates a region in which velocities are O(1) from 
the 'dead-air' region associated with the separation bubble. There will, in addition, be a boundary 
layer at the solid surface in which the inviscid velocity (2.3) is adjusted to zero. Both shear 
layer and boundary layer are discussed on the scale ~ = O(1) in Section 5.1 below. Neither of 
these regions match upstream with the triple-deck region and we argue in Section 5.2 that there 

is an adjustment region in which ~ = O(R-~) between the triple-deck and the emerging shear 
layer and boundary layer. The situation is shown schematically in Fig. 2. 

5.1 The shear and boundary layers 

In the shear layer, which lies close to the boundary just downstream from separation as may be 
seen from equation (2.1), we define co-ordinates ~s, ~'s where the former measures distance 
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along the sheet and the latter is scaled as in (3.1) and is nominally centred upon the vortex 
sheet. Note that to first order ~ and ~s are indistinguishable, and that the inviscid velocities 
V r, V~ and pressure gradient ~p/a~ between the vortex sheet and boundary are indistinguishable 
from their surface values (2.3) when I ~ l ~  1. In the separated part of the boundary layer we 
can assume that the main~ieck profile is the dominant feature, so that from (4.1.3) 

~0 ~ao~s ~ +al~s a +a3~'s s + . . . . . .  (5.1.1) 

s ~ A o ~ :  s +Aa~s s + . . . . . .  

In the shear layer we develop the solution of (3.4) as 

= ~: fl( 's) + ~sf2(~s ) + ~: fa('s) + . . . . . .  (5.1.2) 
s = + g 1 % )  + + . . . . .  , 

where 

1 

In the expansions (5.1.2) the role of the various terms is readily identified. Thus go is required 

to match with the radial velocity (2.2)1 and so 

g0'(oo) = 0, g0'(-•) = 1. (5.1.3) 

The next term in the series for s is required to match with the separated main deck so that, from 

(5.1.1), (5.1.2), (2.3) 

2 gl Ao71 s as 7/s-~oo , ga'(-oo)=O. 

In (5.1.2)1 the leading term matches with the main-deck solution (5.1.1), so that 

ft --a0~s 2 as ~/s~OO, f1'(-,~)=O, (5.1.4) 

as does :2. The next term involving :3 is required to match with the inviscid velocity V~ in (2.3) 

so that 

4 (5.1.5) 
fa ' (~)=0 '  f a ' ( - ~ ) =  2 M + 5  

All the functions ~., gi satisfy ordinary differential equations of which the first pair are 

2 ,, l f l  ,2 = 0, :i" + :,:, - 

ftl 2 ¢" It 
go + ~hgo =U, 
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with  

fl ~a0r/2 as r/-+oo, gg(oo)=0, 

f l(O):go(O)=O, f , ' ( -oo)=O, g0 ' ( -oo)=l .  
(5.1.6) 

Also in this region, where ~ = O(1) with I ~ I ~ 1, a boundary layer will be established on the 
surface z = 0 appropriate to the inviscid surface velocity (2.3)1, 2. As Smith [1] observes, with 
the small favourable pressure gradient (2.3)3 and a slowly diverging external flow there is no 

tendency for the boundary layer in this region to separate. We note that with the surface veloci- 
ties as in (2.3) the boundary-layer equations (3.4) admit a separable solution. However we 
report that the resulting ordinary differential equations have no solution for M ~< 2 • 04. We 
take this to mean that forM-- 0, 1,2 the boundary layer is not determined by local conditions 
but depends upon the flow conditions away from the separation region under discussion. 

The shear-layer and boundary-layer solutions discussed in this section will not match satis- 
factorily with the triple-deck solution of Section 4. This is most readily seen from a further 
discussion of  the shear-layer solution (5.1.2). Thus if we introduce the lower-deck length scales 

_1 
(4.2.1) and (4.2.6) into (5.1.2)1 then we see that ff = O(R ~) as we require (see !4.2.7)) for the 

- _L 
lower deck. However introducing these same scales into (5.1.2)2 gives s = O(R • ), not O(R , ) 
as is required by (4.2.7) if a match with the triple-deck is to be effective. The reason for this 
mis-match is associated with the leading term of the expansion for s in (5.1.2)2. Thus, the 
analysis of Section 4.2 shows that the relatively small lower-deck velocity components parallel 

to the surface are O(R -~ ) whereas the leading term in the expansion for s in (5.1.2)2 is specifi- 
cally constructed to match an O(1) radial velocity as in (5.1.3). 

It is clear that some transition region is needed if a match with the triple-deck region is to be 
effected. This is the adjustment region labelled 3(iii) in Fig. 2 and is discussed below. 

5.2. The adjustment region 

To determine the scale of this adjustment region we first examine the viscous entrainment into 

the shear layer centred upon the vortex sheet of the inviscid flow. From a knowledge of this 
entrainment velocity we can then determine the magnitude of the correction to the inviscid 

velocities in (2.3) due to viscous effects. Thus, from (3.3)2 and (5.1.2) we deduce that 

1 3 -~ --~ , ' 2 1 rTsf 1 ) as ~s -+ 0 Vz ~ 2 ~'8 gO --  2 ~s go  ~8 ( '~  f l -  "~ 

2 C~ s as ~s --> -0% where C = fl (-oo). ~ - ~ s -  

(5.2.1) 

The leading term of (5.2.1) simply accommodates the expanding inviscid conical flow, the 
second term is a measure of the viscous entrainment and, when (3.2) is used, shows that the 
actual entrainment velocity is 

_1 _1 
O (R "~ ~ -~ ). (5.2.2) 
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To assess the effect of this upon the other velocity components consider a control surface with 
the vortex sheet as one side, the plane z = 0 as one side with the remaining sides, the plane 

= ~o where 1>> ~o > 0 and the surface r, r + Ar = const. From (2.1) the height of this region 
___1 3 

is O(R ,~~). Now consider the volume balance within this control surface. Into the vortex 

sheet volume is entrained, from (5.2.2), at the rate 

O(R-~ ~ Ar). (5.2.3) 

If the perturbation velocities parallel to the surface are A V r and A V~ respectively then the other 
contributions to this perturbation volume balance are 

O(R-~{ArAV),  O(R- ~ a r J V ~ ) ,  (5.2.4) 

respectively. Thus, for volume conservation we require 

7 ~ 7 s 

z~v=o(g~(°), AV~ = O(g %¢~1. (5.2.5) 

From (2.3) we may now write, incorporating these perturbations 

Vr=l  +AVr+O(~2) ,  

4 AV~ O(~2), V~= 2 M + ~ ~ +  + 

(5.2.6) 

and we see from (5.2.5), (5.2.6) that as ~ ~ 0 the supposed perturbation is comparable with the 

'main' flow when 

21 

= 0 (R-~). (5.2.7) 

This, when combined with (2.1) and (3.1) to give 

__7 

~-= O(R 8~), (5.2.8) 

provides the scale for the adjustment region. Also, from (3.3) and (5.2.6) we have 

~ = o(R-~), s=0(R88). (5.2.9) 

If we adopt the scales (5.2.7) to (5.2.9) for the adjustment region and allow a subscript 'a' to 
denote a variable appropriate to that region then viscous terms are negligible and from (3.4) we 

have 
3 s ~ a ~  ~)2S a~a ~)2~- a 

- = - - ~ +  =o ,  

3 S Ot~a~ 02~a . O~a ~21~a Ot~ a OS a dPa (5.2.10) 
- ~ a "l- ~ a ]  ~ - 1 -  O~a ~aO~a q- O~a O~a "l--~a =0" 
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The boundary conditions require 

t~a(~a, O) = Sa(~a, O) = 0, (5.2.10 

and also, as ~a "+ 0% 

a~a 
a~a 

s 

2 M + 5 ~ + 0 ~'-Wa ~ ), 

l l  --g 
OSa ~ 1 + 0 ( ~  a ), 

(5.2.12) 

in order to effect a match with (5.2.6). It will also be necessary for the solution in this region 
to match, on 

_3 
~a =/'ta ~2a , (5.213) 

where Ida =R ~la in (2.1), with the solution in the shear layer which separates the adjustment 

region from the separating main deck. In this shear layer, whose continuance has been discussed 
in (5.1.2), we have 

a ± ! 
(5.2.14) 

_ 7  
and £~ as in (5.1.2)1. Further if in this shear layer we write s =R ~8~ then, as ~sa "-'> oo we have from 

(5.1.2)2 

1 7 2 

g -  ~ g o ( ~ )  + K % ~ (rT~) + . . . . . .  (5.2.15) 

where go, gl are as in (5.1.2)2. This leads us to write, for the shear layer associated with the 
adjustment region 

__7 
~= So(G, ~ )  + o ( g  88) 

where So satisfies 

~ #  ~2S0_]_ O~a ~ 2 S ~ 0  -- aaS-----£O (5.2.16) 
a ~  a~L a ~  a~aa~ a~L' 

from (3.4)1. The solution of (5.2.16) is required to match with the adjustment region as 

~ a  ~ --oo and also ~So/O~S a ~ 0 as ~sa -+ oo. 
It now remains to consider how this solution for the adjustment region matches with the 

lower deck in the triple-deck interaction region. The situation is little different at this point 
from the two-dimensional case considered by Sychev [2], and so we require as ~a ---> 0 
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~a ~ ~; XOTa), $a ~ ~a '~ ¢(na), Pa ~ ~a ~ro, 

na = ~ a / ~ a  2 . 
(5.2.17) 

The forms of ~a, Sa in (5 .2.17)1, 2 ensure that in the triple-deck region, where ~ =O(R-~), ~O 
and s are both O(R-¼) as required in the lower deck where ~ = O (R-{). The functions X(r~a), 

01a) satisfy 

5 2XX" + iX  '2 +51r0 =0, 

3 X~)n .~_ 11 X,(~' 
- ~ T = 0 ,  

(5.2.18) 

where 

x(O) = ~(o)  = o, 

X(~ta) = C, ~a)=D 
(5.2.19) 

where C = £1 (-oo) and D is a constant which will be determined from the solution of (5.2.16) 
as ~sa -~ O. The form of ~b in (5.2.17)i is the same as that adopted by Sychev [2] in the two- 
dimensional case and has been shown by Smith [7], in his numerical calculations, to be appro- 
priate. 

This reconciliation of the adjustment region with the lower deck of the triple-deck inter- 
action region completes a self-consistent description of the post-interaction flow. 

6 .  Conc lus ions  

In the preceding three sections we have shown how the inviscid solution, presented by Smith 
[1], for the flow in the neighbourhood of a separation line on a smooth surface in a slender 
conical flow can be embedded within a self-consistent high Reynolds number theory which it- 
self is dependent upon the interaction ideas associated with triple-deck theory. In the proposed 
slender, conical flow, with rapid changes perpendicular to the separation line predicted by the 
inviscid analysis, it is not surprising that the essential features of the high Reynolds number 
flow which emerge are closely related to those proposed for the two-dimensional case by 
Sychev [2]. The main difference between the present work and the two-dimensional theory is in 
the region downstream from separation. In the present case the open type of separation is such 
that the line of separation divides the flow into regions in which the flow velocities are O(1). 
By contrast in two-dimensional flow the separation line divides the flow into a region where 
velocities are O(1) and, in the 'dead-air' region associated with the separation bubble, a region 
in which velocities are very much smaller. Thus in the present case the flow structure immedi- 
ately downstream from separation is more complicated than in two-dimensional flow. 
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